선형회귀분석
-
앞서 배운 선형회귀 분석을 Python으로 구현해보고자 합니다. 먼저 테스트할 데이터가 필요합니다. x,y 데이터 셋을 아래처럼 정의하겠습니다. import tensorflow as tf x_data = [1.,2.,3.,4.] y_data = [1.,3.,5.,7.] x와 y 데이터를 좌표에 찍어서 보면 데이터가 선형(linear)을 이루는것을 알 수 가 있습니다. 이제 이 데이터 셋에 가장 적합한 선을 찾을 수 있도록 해보겠습니다. H(x) = w*x라는 임의의 가설(Hypothesis)을 세우도록 하겠습니다. Python과 TensorFlow를 이용하여 아래처럼 작성해보겠습니다. W = tf.Variable(tf.random_uniform([1],-1.0,1.0)) b = tf.Variable(tf..
선형회귀 Python으로 구현하기앞서 배운 선형회귀 분석을 Python으로 구현해보고자 합니다. 먼저 테스트할 데이터가 필요합니다. x,y 데이터 셋을 아래처럼 정의하겠습니다. import tensorflow as tf x_data = [1.,2.,3.,4.] y_data = [1.,3.,5.,7.] x와 y 데이터를 좌표에 찍어서 보면 데이터가 선형(linear)을 이루는것을 알 수 가 있습니다. 이제 이 데이터 셋에 가장 적합한 선을 찾을 수 있도록 해보겠습니다. H(x) = w*x라는 임의의 가설(Hypothesis)을 세우도록 하겠습니다. Python과 TensorFlow를 이용하여 아래처럼 작성해보겠습니다. W = tf.Variable(tf.random_uniform([1],-1.0,1.0)) b = tf.Variable(tf..
2021.07.22 -
머신러닝을 배우기 시작하면 꼭 한번 쯤은 공부하게 되는 선형회귀분석입니다. 머신러닝을 배우는 과정에서는 선형회귀외에도 Binary Classificaion, PCA분석, KNN 알고리즘 등 다양한 방법들이 있지만 오늘은 선형회귀에 대해 알아보고자 합니다. 아래 이미지가 잘 보이시나요? 선형회귀분석을 잘 설명하는 이미지라고 볼 수 있습니다. 파란색 점들이 데이터 일때, 파란색 데이터들이 어떤 형태로 이루어져 있는 것 처럼 보이시나요? 빨간색 선이 잘 보여주고 있죠? 마치 데이터들이 선형성(Linear)을 띄고 있다는 것을 알 수 있습니다. 선형회귀분석을 적용하고자 하신다면 기본적으로 데이터들이 선형성을 띄는것이 필요합니다. 반대로 말하자면 분석하고자 하는 데이터셋이 원형형태의 군집을 이루고 있거나, 방사형..
선형회귀(Linear Regression)머신러닝을 배우기 시작하면 꼭 한번 쯤은 공부하게 되는 선형회귀분석입니다. 머신러닝을 배우는 과정에서는 선형회귀외에도 Binary Classificaion, PCA분석, KNN 알고리즘 등 다양한 방법들이 있지만 오늘은 선형회귀에 대해 알아보고자 합니다. 아래 이미지가 잘 보이시나요? 선형회귀분석을 잘 설명하는 이미지라고 볼 수 있습니다. 파란색 점들이 데이터 일때, 파란색 데이터들이 어떤 형태로 이루어져 있는 것 처럼 보이시나요? 빨간색 선이 잘 보여주고 있죠? 마치 데이터들이 선형성(Linear)을 띄고 있다는 것을 알 수 있습니다. 선형회귀분석을 적용하고자 하신다면 기본적으로 데이터들이 선형성을 띄는것이 필요합니다. 반대로 말하자면 분석하고자 하는 데이터셋이 원형형태의 군집을 이루고 있거나, 방사형..
2021.07.15