이전 포스팅에선 주성분 분석의 개념에 대해 알아보았습니다. (이전 포스팅 바로가기) 이번 글에선 Python을 이용하여 PCA분석 예제를 테스트 해볼 수있도록 해보겠습니다. PCA는 Eigen Value값이 큰 Eigen Vector를 선택하여 차원을 축소하는 알고리즘입니다. 먼저 Pandas를 활용하여 테스트할 데이터 셋을 만들어 보도록 하겠습니다. (참조:https://github.com/minsuk-heo/python_tutorial/blob/master/data_science/pca/PCA.ipynb) import pandas as pd df.loc[0] = [1200, 1, 0, 0, 2, 'Skinny'] df.loc[1] = [2800, 1, 1, 1, 1, 'Normal'] df.loc[2..
주성분 분석, PCA(Principal Component Analysis) 쉽게 이해하기(2)
이전 포스팅에선 주성분 분석의 개념에 대해 알아보았습니다. (이전 포스팅 바로가기) 이번 글에선 Python을 이용하여 PCA분석 예제를 테스트 해볼 수있도록 해보겠습니다. PCA는 Eigen Value값이 큰 Eigen Vector를 선택하여 차원을 축소하는 알고리즘입니다. 먼저 Pandas를 활용하여 테스트할 데이터 셋을 만들어 보도록 하겠습니다. (참조:https://github.com/minsuk-heo/python_tutorial/blob/master/data_science/pca/PCA.ipynb) import pandas as pd df.loc[0] = [1200, 1, 0, 0, 2, 'Skinny'] df.loc[1] = [2800, 1, 1, 1, 1, 'Normal'] df.loc[2..
2021.09.18